Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 127935, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949283

RESUMO

PaaX is a transcriptional repressor of the phenylacetic acid (PAA) catabolic pathway, a central route for bacterial aerobic degradation of aromatic compounds. Induction of the route is achieved through the release of PaaX from its promoter sequences by the first compound of the pathway, phenylacetyl-coenzyme A (PA-CoA). We report the crystal structure of PaaX from Escherichia coli W. PaaX displays a novel type of fold for transcription regulators, showing a dimeric conformation where the monomers present a three-domain structure: an N-terminal winged helix-turn-helix domain, a dimerization domain similar to the Cas2 protein and a C-terminal domain without structural homologs. The domains are separated by a crevice amenable to harbour a PA-CoA molecule. The biophysical characterization of the protein in solution confirmed several hints predicted from the structure, i.e. its dimeric conformation, a modest importance of cysteines and a high dependence of solubility and thermostability on ionic strength. At a moderately acidic pH, the protein formed a stable folding intermediate with remaining α-helical structure, a disrupted tertiary structure and exposed hydrophobic patches. Our results provide valuable information to understand the stability and mechanism of PaaX and pave the way for further analysis of other regulators with similar structural configurations.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas Repressoras/metabolismo , Regiões Promotoras Genéticas , Fenilacetatos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Comput Struct Biotechnol J ; 19: 1119-1126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680355

RESUMO

Broad-spectrum amino acid racemases (Bsrs) enable bacteria to generate non-canonical D-amino acids (NCDAAs), whose roles and impact on microbial physiology, including modulation of cell wall structure and dissolution of biofilms, are just beginning to be appreciated. Here we used a diverse array of structural, biochemical and molecular simulation studies to define and characterize how BsrV is post-translationally regulated. We discovered that contrary to Vibrio cholerae alanine racemase AlrV highly compacted active site, BsrV's is broader and can be occupied by cell wall stem peptides. We found that peptidoglycan peptides modified with NCDAAs are better stabilized by BsrV's catalytic cavity and show better inhibitory capacity than canonical muropeptides. Notably, BsrV binding and inhibition can be recapitulated by undigested peptidoglycan sacculi as it exists in the cell. Docking simulations of BsrV binding the peptidoglycan polymer generate a model where the peptide stems are perfectly accommodated and stabilized within each of the dimers active sites. Taking these biochemical and structural data together, we propose that inhibition of BsrV by peptidoglycan peptides underlies a negative regulatory mechanism to avoid excessive NCDAA production. Our results collectively open the door to use "à la carte" synthetic peptides as a tool to modulate DAAs production of Bsr enzymes.

3.
J Am Chem Soc ; 136(28): 9814-7, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24955778

RESUMO

Ceftaroline, a recently approved ß-lactam antibiotic for treatment of infections by methicillin-resistant Staphylococcus aureus (MRSA), is able to inhibit penicillin-binding protein 2a (PBP2a) by triggering an allosteric conformational change that leads to the opening of the active site. The opened active site is now vulnerable to inhibition by a second molecule of ceftaroline, an event that impairs cell-wall biosynthesis and leads to bacterial death. The triggering of the allosteric effect takes place by binding of the first antibiotic molecule 60 Å away from the active site of PBP2a within the core of the allosteric site. We document, by kinetic studies and by determination of three X-ray structures of the mutant variants of PBP2a that result in resistance to ceftaroline, that the effect of these clinical mutants is the disruption of the allosteric trigger in this important protein in MRSA. This is an unprecedented mechanism for antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Modelos Moleculares , Conformação Molecular , Mutação/fisiologia , Proteínas de Ligação às Penicilinas/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/genética , Conformação Proteica , Difração de Raios X
4.
Proc Natl Acad Sci U S A ; 110(42): 16808-13, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24085846

RESUMO

The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the ß-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to ß-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the ß-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to ß-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with ß-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain--a remarkable 60 Å distant from the DD-transpeptidase active site--discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA ß-lactam antibiotic. The ability of an anti-MRSA ß-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second ß-lactam molecule, opens an unprecedented realm for ß-lactam antibiotic structure-based design.


Assuntos
Resistência a Meticilina/fisiologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Proteínas de Ligação às Penicilinas/química , Acilação/fisiologia , Regulação Alostérica/fisiologia , Domínio Catalítico , Cefalosporinas/química , Cefalosporinas/metabolismo , Cristalografia por Raios X , Staphylococcus aureus Resistente à Meticilina/genética , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Especificidade por Substrato/fisiologia
5.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 10): 1278-80, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22102047

RESUMO

PaaX is the main regulator of the phenylacetic acid aerobic degradation pathway in bacteria and acts as a transcriptional repressor in the absence of its inducer phenylacetyl-coenzyme A. The natural presence and the recent accumulation of a variety of highly toxic aromatic compounds owing to human pollution has created considerable interest in the study of degradation pathways in bacteria, the most important microorganisms capable of recycling these compounds, in order to design and apply novel bioremediation strategies. PaaX from Escherichia coli W was cloned, overexpressed, purified and crystallized using the sitting-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of 0.9 M Li(2)SO(4) and 0.5 M sodium citrate pH 5.8. These crystals, which belonged to the monoclinic space group C2 with unit-cell parameters a = 167.88, b = 106.23, c = 85.87 Å, ß = 108.33°, allowed the collection of an X-ray data set to 2.3 Å resolution.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Repressoras/química , Cristalização , Cristalografia por Raios X
6.
J Biol Chem ; 286(36): 31714-22, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21775432

RESUMO

AmpD is a cytoplasmic peptidoglycan (PG) amidase involved in bacterial cell-wall recycling and in induction of ß-lactamase, a key enzyme of ß-lactam antibiotic resistance. AmpD belongs to the amidase_2 family that includes zinc-dependent amidases and the peptidoglycan-recognition proteins (PGRPs), highly conserved pattern-recognition molecules of the immune system. Crystal structures of Citrobacter freundii AmpD were solved in this study for the apoenzyme, for the holoenzyme at two different pH values, and for the complex with the reaction products, providing insights into the PG recognition and the catalytic process. These structures are significantly different compared with the previously reported NMR structure for the same protein. The NMR structure does not possess an accessible active site and shows the protein in what is proposed herein as an inactive "closed" conformation. The transition of the protein from this inactive conformation to the active "open" conformation, as seen in the x-ray structures, was studied by targeted molecular dynamics simulations, which revealed large conformational rearrangements (as much as 17 Å) in four specific regions representing one-third of the entire protein. It is proposed that the large conformational change that would take the inactive NMR structure to the active x-ray structure represents an unprecedented mechanism for activation of AmpD. Analysis is presented to argue that this activation mechanism might be representative of a regulatory process for other intracellular members of the bacterial amidase_2 family of enzymes.


Assuntos
Amidoidrolases/química , Citrobacter freundii/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/química , Proteínas de Bactérias/química , Catálise , Cristalografia por Raios X , Ativação Enzimática , Concentração de Íons de Hidrogênio , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...